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N U M E R I C A L  M O D E L  OF T H E  D Y N A M I C S  

OF A M O M E N T U M L E S S  T U R B U L E N T  W A K E  IN A P Y C N O C L I N E  

O. F. Voropayeva and G. G. Chernykh UDC 532.517.4 

1. I n t r oduc t i on .  Turbulent wakes behind bodies of revolution in a stratified fluid have been considered 
in many publications [1-21]. In [1], Schooley and Steward have analyzed experimentally the dynamics of 
a turbulent wake behind a self-propelled body in a linearly stratified medium. In addition, they have 
demonstrated collapse and generation by the wake of internal waves. The phenomenon of momentumless 
wake collapse in a linearly stratified medium has been studied experimentally by Merrit in [2]. In laboratory 
tests, Lin and Pax) [3] (see also [4]) have investigated in detail the turbulence characteristics in the wakes behind 
bodies moving in a linearly stratified medium. In [5], Gilreath and Brandt have analyzed experimentally the 
pattern of internal waves generated during the motion of bodies in stratified fluids. In addition, they have 
given theoretical estimates of internal waves, including the waves induced by the collapse of the turbulent 
wake in pycnocline. 

A series of studies [6-13] deals with the flow occurring during motion of a towed sphere in a linearly 
stratified fluid. Various flow regimes have been studied, depending on the Reynolds and Froude numbers both 
in the near and far wakes. In [10], Bonneton et al. have studied theoretically internal waves produced by 
the turbulent wake of a sphere moving in a linearly stratified fluid. In addition, they have considered the 
wake's wave component that is associated with coherent structures. In [12, 14], Chashechkin and Voisin have 
comprehensively analyzed experimental data on turbulent-wake degeneration behind towed and self-propelled 
bodies in linearly stratified fluids and also have estimated theoretically the parameters of internal waves. 

The initial stage of development of the wake in a linearly stratified fluid has been considered 
theoretically by Onufriev [15] using the algebraic model of Reynolds stresses and fluxes. In [16], Lewellen 
et al. have modeled numerically the turbulent wake and collapse-produced internal waves at small distances 
from a self-propelled body in a linearly stratified medium, which is based on the model of a Iocai-equilibrium 
approach. 

To analyze numerically the wakes behind self-propelled and towed bodies in a linearly stratified 
medium, Hassid [4] used a modified model of the locally equilibrium approach with involvement of the 
equations of turbulent-energy transfer and its dissipation rate. He obtained satisfactory agreement with the 
experimental data obtained by Lin and Pao which are concerned with the measurement of the characteristic 
sizes of the wake, velocity defect, and turbulence energy on the wake axis as a function of the distance from 
a body (for one of the values of the Froude number). However, as correctly noted in [22], for a self-propelled 
body, the action of stratification turned out to be stronger than in experiments. 

As an illustration of application of the implicit variant of the splitting method in terms of physical 
processes for stratified-flow calculations, Danilenko et al. [17] have considered the turbulent wake behind a 
self-propelled body in a linearly stratified fluid. The studies [18-21] also deal with a numerical modeling of 
turbulent wakes behind bodies in stratified fluids. In particular, the role of the initial swirling in the evolution 
of a momentumless turbulent wake in a linearly stratified medium was evaluated by Glushko et al. [19]. 
Chernykh et al. [20, 21] have analyzed a variant of the momentumless wake in a fluid with nonlinear density 
distribution in depth. For linear stratification, they obtained satisfactory agreement with the experimental 
data in [3] on the anisotropic decay of the intensities of turbulent velocity-field fluctuations. 
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In [2, 23-26], turbulent wakes have been studied using a schematic plane model. The plan(, 
nonstationary problem of the evolution of the localized-perturbation region in a linearly stratified fluid has 
been considered. Some studies [27-30] are devoted to the dynamics of localized plane regions of a turbulent 
fluid in media with nonlinear stratification. 

A simple analytical quasi-one-dimensional model of the evolution of the turbulent-perturbation region 
in the wake behind a body moving in a linearly stratified medium was constructed in [31]. 

In the analysis of the literature cited above, we should mention the following. Degeneration of 
momentumless turbulent wakes in a linearly stratified fluid has been fairly well studied. Both experimental 
and consistent calculational-theoretical modeling results are available. 

In the case of nonlinear stratification, the situation is more complicated, because data of laboratory 
experiments on degeneration of the turbulent wake proper are practically absent. 

The calculation results given in [28, 29] were obtained based on the schematic plane model. In this case, 
the question on the role of the defect of the horizontal velocity component toward a direction that coincides 
with the direction of body motion remains open. In addition, there is no correspondence with the results of 
the laboratory experiments in [3] for a homogeneous fluid. The pycnocline plays a special part among the 
nonlinear density distributions of an unperturbed fluid in depth. In this case, a pattern of finite-amplitude 
internal waves which is close to a steady-state one can be formed [5, 25]. In the publications known to the 
authors, there are no results of numerical modeling of the dynamics of a momentumless turbulent wake in a 
pyenocline. In the present work, we make an at tempt to investigate numerically this flow with application of 
a modified e-e model of turbulence. 

2. F o r m u l a t i o n  of  t h e  P r o b l e m .  Governing Equations. To describe the flow in the far turbulent 
wake behind a body of revolution in a stratified medium, we use the following system of averaged equations 
of motion, continuity, and incompressibility in the Oberbeck-Boussinesq approach: 

o~Jv ovD u= --g; + v--~-u + w 

OV v OV w OV 
uoo-~g + T~u + o =  

OUDoz = ~---~(u'v') + O(u 'wl) ;  (2.1) 

10(pl) 0 a 0 , , ~(,, ) - ~(,, ,,, ); ( 2 . 2 )  (gy po u 9  

ow v~ 0 w  1 o<.,> (P'>; (2.3) 
~ ' o o ~ +  ~ + w o ~  = po o~ (,,,~,)_ (~a)_g po 

0(pl) 0(pl) 0(pl) + dp, 0 , ,  0 w' ' ,  
Uoo ~ + V --~--  + W --~z W dz = --~y (v P ) - ~z ( O )" (2.4/ 

OV OW 
+ = o. (2.5) 

OV Oz 

Here Up = Uoo - U is the defect of the averaged longitudinal velocity component; U, V, and W are the 
velocity components of the averaged motion in the direction of the z, V, and z axes; pl is the deviation of the 
pressure from hydrostatic pressure, which is due to the stratification ps(z), Uoo is the free-stream velocity; 9 
is the acceleration of gravity, (pl) is the averaged density defect: pl = p - ps; ps = ps(z) is the density of 
the unperturbed fluid: dps/dz <~ 0 (stable stratification); p0 = ps(0); the prime and ( ) refer to the pulsation 
components and averaging, respectively. The system of coordinates is related to a moving body such that the 
velocity of motion of this body is equal to -Uoo, and the z axis is directed vertically upward, against the 
gravity. The fluid density is assumed to be a linear function of temperature, and stratification is assumed to 
be weak. On the right-hand sides of Eqs. (2.1)-(2.4), terms which contain the derivative with respect to the 
variable z and also cofactors as a laminar-viscosity or diffusion coefficient are omitted under the assumption 
that these terms are small. As in [4], the term OU/Oz in (2.5) is omitted under the assumption of its smallness. 
The authors based the last simplification on the arguments of [4], the essence of which lies in the fact that 
system (2.1)-(2.5) is equivalent to the system of equations of the far wake in a homogeneous fluid; for this 
case, V = W ~ 0 and Eqs. (2.2), (2.3), and (2.5) are not considered. In the case of the wake dynamics in a 
stratified fluid, a convective flow corresponding to wake-generated internal waves emerges in the (V, z) plane. 
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Degeneration of the velocity components V, and W occurs more slowly than degeneration of UD -- Uoo - U. 
This assertion seems plausible for the momentumless wakes that we are considering in the present study. 
In addition, in [20] the authors performed numerical experiments in which, for one of the variants of the 
problem parameters, degeneration of the momentumless turbulent wake in a stratified medium is modeled 
numerically using both the complete three-dimensional equation of incompressibility and its simplified variant 
(2.5). The calculation results proved to be fairly close. Following from the foregoing considerations, the authors 
(precisely as the authors of [4, 19]) used the equation of incompressibility in the form of (2.5). Application 
of (2.5) simplified considerably the numerical algorithm for the solution of the problem. System (2.1)-(2.5) is 
different from that adopted in [4] by the absence of the quantity O(pl)/Ox in Eq. (2.1). 

Model of Turbulent Motion. System (2.1)-(2.5) is not closed. In the present work, the components of 
the Reynolds-stress tensor (u~u~) (except for (v'w') = \/u'2u'a/j, \\ turbulent fluxes (u~p'), and of the dispersion of 
the density fluctuations (p,2) are approximated by the relations of [32] (summation is performed over repeated 
indices): 

(uiuj)' ' __26i. i+ 1 - c 2 ( P o  2 6 i i P  ) + 1 - c a  ( ~ 1  26ijG), .  (2.6) 
e 3 cl c 3 cl 3 

, , e [ O(p) _ ((ukp, ,) OxkOUi Pogi (p,2))]; - ( u i p  ) = ClTg (ulu~) ~ + (1 C2T ) (2.7) 

2 ~ (u~p') o(p) (2s) 

Here i, j ,  and k can take on the values 1, 2, and 3, g = (0 ,0 , -g) ,  2P = Pii, 2G = Gii, 0"1 = U, Us = V, and 
Ua = W.  

Similarly to [4], we shall simplify expressions (2.6)~-(2.9) with allowance for the specific physical features 
of the flow considered - -  concurrent jet turbulent flow in the gravity field at large distances from the body. 
In this case, relations (2.9) are replaced by approximate ones: 

( 0v. OUD P13 = (w '2) OUD OUD~ P22 = P3a = O, P12 = (v r2) O---y" Pii = 2 (r162 ~ + (r - ~ - ] ,  ' o~ 

Expressions (2.6)-(2.8) are simplified as follows: 

(utvt)_ 1-  c2 e(v '2) OUD OUo. 
cl ~ Oy - Ky Oy ' (2.10) 

/[ ( (u'w') = (1 - c2)e(w '2) cle 1 1 - ca g e 2 ) OUD = K,  �9 (2.11) 
ClClT PO ~2 OZ OZ ' 

_ _ _  _ O ( p )  (2.12) 2 e (w'p') ; 
(p,2) = or ~ Oz 

--(v'p') = e(v'2) O(p) = gpy O(p). (2.13) 
CITe Oy Oy ' 

e [ O(p) g ,  ,2,1 -<w'p')- c~v~ (w'~)-~-= +(I --~T)~P ~1 

= e<w'~>/[clr~ ( 1 - 2  [ :  c2__r g e~ 00(!>)] 0(p>= K.O<p) (2.14) 
CITCT PO e2 OZ Oz " 

The values of the turbulence energy e, the dissipation rate e, and of the shear Reynolds stress (vtw ~) 
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are determined from the differential equations of transfer: 

Oe Oe Oe 0 Key Oe 0 Oe 
u ~ + v N + w  o ~ = o ~  N + ~ 1 ( ~ z ~ + P + a - ~ ;  (2.1~) 

Oe O~ O~ O K~y O~ 0 O~ ~ ~2 
U ~176 "~x + V ~y + W o z - O y -~y + ~z  K e z -~z + c~ l - ( P + G ) - ce 2 - e (2.16) 

a<,,'w'> o ( r  a(r a a(.'~'> a a<r 
uo~ a---T- + v o------~- + w o~ - oy ge~ o - - - ~ + ~  A'~" o - - T  - + ( l - c 2 ) p ~ s  

OW OVa,  

The turbulent-viscosity coefficients in Eqs. (2.15)-(2.17) have the form [32] 

Key = c,e(v '2)/r  Kez = cse(w'2)lr Key = Key~c, Ke= = Kezlo'. (2.18) 

After these manipulat ions,  the mathematical  model of the far turbulent wake is the system of differential 
equations (2.1)-(2.5), (2.15)-(2.17) with allowance for (2.10), (2.11), (2.13), (2.14), and (2.18). The quantity 
(p,2) is determined by the algebraic relation (2.12); Cl = 2, c2 = 0.6, c3 = 0.6, ClT = 3.2, C2T = 0.5. 
CT = 1.25, Cel = 1.44, ce2 = 1.92, Cs = 0.22, and cr = 1.3 are empirical constants. The  main difference of 
this mathemat ical  model  from that  adopted in [4] lies in the use of "isotropic" [32] relations (2.6) in order 
to determine the components  of the Reynolds-stress tensor instead of a locally equilibrium approximation. 
Approximation (2.6) in the present work allowed one to obtain a better correspondence of the calculation 
results to the experimental  results obtained by Lin and Pax) [4] in a linearly stratified fluid. 

Initial and Boundary  Conditions. The  variable z in Eqs. (2.1)-(2.4) and (2.15)-(2.17) plays the role of 
time. For z = z0, the following initial conditions were specified: 

UD(~o,y,~) = 0o(0, ~(~o,y,~) = o1(~), eC~o,y,~) = 0~(0, ,.2 = y2 + z  2 (o .< ~ < oo), 

( p 0  = v = w = ( r  = 0 ( - ~ o  < y < oo,  - o o  < z < oo,  ~ = ~0).  

Here 00(r), 01(r), and 02(r) are finite bell-shaped functions which are consistent with the experimental  data 
obtained in a homogeneous fluid. 

For r ~ oo, the following unperturbed-flow conditions were set: 

UD = e = ~ = (v'w'} = (Pl) = V = W = 0. (2.19) 

We have also considered the distributions ps(z)  such that  the function #,(z )  - p o  is an ant isymmetr ic  function 
of z. In this case, from the symmet ry  considerations, the solution was searched only in the  first quadrant  of 
the plane (y, z) with the use of boundary conditions in the  form 

O(pl) oe & o w  _ o g o  = (,/,,,,) = o (y = O, z >t O), 
Oy - Oy = ~ = V = Oy - Oy 

Oe Oe OV OUo 
(P') = o--; = o-; = w = oz Oz = ( , /w')  o (z o, y >1 o). 

In numerical solution of the problem, the boundary conditions (2.19), which correspond to r --, cr were 
referred to the boundaries of the large rectangle z = z, (0 <~ y ~< y,)  and y = y, (0 ~ z ~< z,). 

It is convenient to reduce system (2.2), (2.3), and (2.5) to the following: 

a~ a~ a~ gO(p,) 02 [ ] ~ o~ 2 Uoo -~x + V -~y + W O-'-~- - po Oy OyOz <v'2> - <w'2) - (v 'w')  + (v'w'); (2.20) 

0 2 r  0 2 r  
cgy 2 + ~ = w. (2.21) 

Here the stream function ~/, is defined by the equalities V = Or and W = - 0 r  

394 



Nondimensionalization. The variables of tile problem can be made nondimensional with the use of the, 
scale of length D (body diameter) and the scale of velocity U,o (unperturbed-flow velocity). Let us introduc(, 
the following nondimensional variables: 

x* x / D ,  y* y /D,  z* z /D,  U i Ui/Uoo, , , , , .  , , 2 = = = " = ~ ,~j~  = ( ~ , ~ j > / v s  

c* e l U  2 ,  ~* o D I U m ,  (pl )*  = (p l ) / ( aOpo) ,  " ' " *  = = ~ , p  ~ = ( , ' : ' ) l ( a O p o U o o ) ,  

(p,2). = (p,2)/(aOpo)2 [a = -(1/po)dps/dz,  z = 0]. 

As a result, in the nondimensionai equations, the quantity 4~'2/Fr 2 appears instead of g, where Fr is the Froude 
number determined by the equality Fr = U ~ T / D  (T = 27r/v/" ~ is the Brunt-VSis&l~. period). To interpret 
the calculation results, it is appropriate to introduce the time t connected with the distance from the body: 
t = x/Uoo, t* = t / T  = xD/(UooDT) = x*/Fr. In what follows, the superscript of nondimensionalizatio, 
(asterisk) is omitted everywhere except for the figures. 

3. A l g o r i t h m  for So lu t i on  of  t he  P r o b l e m .  To construct a finite-difference algorithm, we shall 
introduce the following new independent variables: 

I I I ! x = ~ ,  ~ = u  = X l ( y ) ,  ~ = z  = x ~ ( z )  [ z = ~ ,  y = : i ( ~ ) ,  z = : ~ ( ~ ) ] .  (3.1) 
The Jacobian of the transformation that performs a transition from variables (x, y, z) to variables (x ~, y', z') 
is as follows: 

j _  O(x ,y ,z )  _ Oy Oz 

O( z', ~, 7 ) O~ 0,7 

The functions ~1 and ~p~ are given in a tabular form; their choice enabled us to cluster the grid nodes in the 
domain of large density gradients and in the vicinity of the turbulent wake. In the new coordinate system 
(x', ~, ~), the nodes of the calculation grid in the plane (~, ~) are distributed uniformly: ~i = iA~ and ~/i = jAr/ 
(i : 0 , . . . ,M1;  j = 0 , . . . ,  M2), r  "-" y.,  and ~2(YIM2)  ----- z , .  The grid step Ax in the direction of the z 
axis was chosen variable. 

The algorithm for solving the problem was reduced to a successive integration of system of equations 
(2.20), (2.21), (2.1), (2.4), and (2.15)-(2.17) which are written in the new coordinate system, in each layer 
n over the variable z. This algorithm is based on the method of splitting in terms of spatial variables [33]. 
To solve the equation of vorticity transfer (2.20), we use the simplest splitting scheme with approximation of 
convective terms by one-sided upwind differences. The values of the stream function r were calculated using 
the iteration scheme of stabilizing correction. 

The remaining equations of the mathematical model were integrated using the method of splitting in 
terms of spatial variables, and convective terms were approximated by central-difference relations. Because 
of the awkwardness, the finite-difference analogs of these equations are not given here. The equations were 
integrated successively by the scalar sweep method. In computations of any of the functions r UD, (Pl), e, 
r and (v'w') on the layer (n -F 1), we used the already known quantities (functions) on this layer, while the 
rest of them were taken from the lower layer n. Thus, recalling the simplicity of a computer realization, we 
took advantage of the idea of a "block" analog of the Seidel method. 

We shall dwell on the approximation of the boundary conditions. The challenge is symmetry conditions 
for the defect of the longitudinal velocity component UD. Since we consider the momentumless turbulent flow. 
the law of conservation is a consequence of the integration of Eq. (2.1) over the entire cross section: 

OO o o  
H 

d dz = I I  = : o (32)  
- - ( : ~  --( :X) - - ( X )  

As already noted, for numerical integration of Eq. (2.1), the scheme of splitting in terms of spatial variables 
was employed. A scheme in integer steps, which is equivalent to it, contains terms of the order O(Ax)  which 
are absent in the implicit finite-difference scheme, which is a direct approximation of (2.1). Along with the 
central-difference approximations of convective terms in Eq. (2.1), these terms turn out to be inconsistent 
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with the approximation of the Neumann conditions on the axes of symmetry in the sense that  the analog of 
the conservation law (3.2) is satisfied in the first quadrant  of the plane ({, r/). Since the coordinate axes can 
be regarded as the boundary  of the region only conditionally, the finite-difference equations on the integral 
and fractional steps were solved up to the boundary with the use of the symmetry (ant isymmetry)  conditions 
of the form (the superscript  n refers to the variable x'): 

(uo)ady"- , , r  , . + 1 / 5  e "  " " , = ( U D ) I , j  , -1 , i  ---- e l , j '  - t , j  = e l , j ,  

( g D ~ n + l  n+l  n n n n 
/ i , -1 = ( U o ) i , l  , e i , - I  = e l , l ,  r  = ~i , l ,  

•bn+l n+l 
--l,j = --• l , j  (0 ~< j ~< M2), 

r ,/,n+l (O~<i~<M1). i ,-1 = - - W i , l  

The consequence of such an approximation of the boundary conditions of symmetry  and the splitting scheme 
used is the conservation law which is equivalent to the grid approximation (3.2): 

M2-1 M I - I  M2-1 

I01 = [ Ji,j(Uo)i,j'" ,n+l + 0 . 5  ~ Jo,j(Uo)'d, +' 
j=l  i=1 j=l 

MI-1  
J ~U xn+l n+l] + 0.5 Z i,o( D)i,O + 0.25Jo,o(UD)o,o A~AT/= 0. (3.3) 

i=1 J 

As the boundary  conditions for e, e, and (Pl), on the axes of coordinates we used conditions that  are 
similar to the above ones, and the simplest approximations of the Neumann condition are as follows: 

n+l /2  n+l[2 n+l /2  n+l /2  , ~n+l[2 \n+l [2  
eo, j  = e l , j  , ~o,j = ~ l , j  , ~PlIo, j  = ( P l l l , j  , 

e n + l  = en+ l  cn+ l  = gn+l  , ~n+l i,o i,1 , i,O i,1 , ~Plli,o = 0  (O <<. i <. M1; 0 ~<j ~< M2). 

In this case, the deviation of the grid solutions in a norm tha t  is a grid analog of the space norm of continuous 
functions, did not exceed 6%. 

Special a t tent ion was given to the approximation of the  boundary conditions for Eq. (2.1) in connection 
with the fact tha t  the nondivergence of the finite-difference algori thm [nonsatisfaction of (3.3)] can lead to a 
substantial distort ion of the  solution even in a homogeneous fluid [34]. 

4. T e s t i n g  t h e  A l g o r i t h m .  Convergence of the algori thm was tested experimental ly by solving 
model problems. In the case of a homogeneous fluid (g = 0), the initial differential problem is equivalent to 
the following system of one-dimensional equations: 

where 

OUo 1 O ( r K  OUD'~ (4. 1) 
a x  = - Tj 

0e 1 0 (  0e )  
0"~ = r ~r  r g  ~r + P - e; (4.2) 

0e 1 0 rK 0e e 2 e 
- - -  + c~x-P, (4.3) Oz r Or a Or c~2 e e 

2 1 - c 2  e p ; p  K=l-e2(va)e" (,~) 32__e 3 c~ 
Cl r ' \ " ~ - r  ] 

For z = x0 = 8, we specified the initial conditions of [4] which are consistent with the experimental 
data of Lin and Pao on decay of turbulent  wakes in a homogeneous fluid: 

e(z0, r) = E0exp( -4 r2 ) ,  Eo = e(x0,0), ~(z0,r) = v /~E0S/2exp(-6r2) ,  
(4.4) 

Uo(xo, r) = Ud(1 - Sr 2) exp( -Sr2) ,  Ua = Uo(xo, 0). 

For r = 0, we set the following boundary conditions: 

Oe O~ OUD 
- - -  = 0. (4 .5 )  

Or - Or Or 
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For r --~ oo, the zero boundary conditions for the desired functions were specified. 
Problem (4.1)-(4.5) was solved using the following finite-difference algorithm: 

+1 - (uo)  1 
= -- (AUD)~ +1" (4.6) 

A x  n ri ' 

e~ +1 -- e~ _ l ( A e ) n +  1 + pp+l  _ ~ ;  ('1.7) 
A x  n ri 

e ~ + l -  ~ _ A x  n ~r r---i 1 (Ae)~+I - c~2r -n'e"+l~i ! i + c~1~+1 P/n+1/e~+l (4.8) 

(i = 1 , . . . , M r - 1 ;  n = 0 , . . . , N ) .  

Here (Af)~ +1 = (ai+lJi+l" r,~+l _ ( a i  +ai+l)f,~+l-taiji_lr,+l~lh2)/ r, ai = (r iK~ + r i _ l K ~ _ l ) / 2 ,  p~+l = K~ (((UD)i~+ +1 - 
(UD)~+1])/2hr) 2, and f is one of the functions UD, e, and r 

For the sake of simplicity, the grid step with respect to the variable r was assumed to be constant. The 
difference equations (4.6)-(4.8) are solved sequentially on each layer with respect to x. Problem (4.1)-(4.5) 
was integrated using the above finite-difference algori thm on the sequence of imbedded grids. The solutions 
were compared in the uniform norm. Calculations were performed on grids with the following parameters: 

(1) h! ~) = h0 = 0.1, r~ = Ax" = 0.01-0.5 (r~ was varied by the formula for the sum of terms of a 
arithmetical progression with difference 0.01); 

(2) h! = h0/2  and = 

(3) hP  ) = ho14 and f f  = 
(4) h (4) = ho/8 and f f  = r~/16 .  

For x -- 100, the relative difference of the solutions for two neighboring grids was 4.9, 1.1, and 0.35%, 
respectively, for the turbulence energy e; 4.05, 0.95, and 0.5% for the dissipation rate r and 5.8, 1.3, and 
0.56% for UO. These results show the convergence of the  sequence of grid solutions in itself. 

Further  testing was conducted according to the following scheme: the grid solution that  was obtained 
using a very fine grid (r~ = r ~ /16  and h! 4) = h0/8) was called an "exact" solution, and the algorithm of 
solution of the problem was tested as applied to Eqs. (2.1), (2.15), and (2.16). For simplicity, the transformation 
of coordinates (3.t) was assumed to be identical. Since system (2.1), (2.15), and (2.16) [and its one-dimensional 
analog (4.1)-(4.3)] is a sys tem of degenerate parabolic equations [35] which possesses the property of finite 
perturbat ion velocity, it proved sufficient to set y. -- 5 and z. = 5. A comparison yielded the following 
results. For x -- 100 and the following parameters of a uniform calculation grid Ax n = r~ and hy -- h ,  = h0, 
Ax '~ = r~'/4 and hy = h ,  = ho/2,  and Ax'* = r ~ / 8  and hy = h ,  = ho/4, the relative deviations of the grid 
solutions of the two-dimensional problem from the "exact" solution for the turbulence energy e were 9.33, 6.8. 
and 6.09%, respectively. For the dissipation rate e, the deviations obtained were equal to 8.8, 5.4, and 3.8%. 
and, for the velocity defect Up,  these quantities were equal to 14.4, 5.1, and 4.4%. To compare the "exact" 
solution of the one-dimensional problem (4.1)-(4.5) with that  of its two-dimensional finite-difference analog, 
the values of the one-dimensional functions were restored in the nodes of the two-dimensional domain, using 
standard cubic spline-interpolation. 

The problem of the anisotropic temperature  wave [35] is a well-known test for solution algorithms of the 
two-dimensional nonlinear heat-conductivi ty equation. The  authors checked the convergence of the algorithm 
(having changed one of the diffusion equations of the mathemat ica l  model) using this test as well. 

In addition, the experimental  analysis of convergence that  we have made in the preceding consideration 
is of interest in connection with the fact that  it is immediately connected with the problem to be solved and 
allows one to est imate the algori thm parameters,  which must  reach the given accuracy upon its solution in 
complete formulation. 

The algori thm stage connected with integration of system (2.20), (2.21) was tested on the problem of 
the dynamics of a local density-field perturbat ion in a stratified medium [28]. 

The efficiency of the mathemat ica l  model in complete formulation was analyzed using the experimental 
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data  of Lin and Pao on degeneration of the momentumless  turbulent  wake in a linearly stratified medium 
[3, 4]. The calculation results for the Froude number Fr = 31 axe given in Figs. 1-3. Figures 1 and 2 give 
the t ime variation of the axial wlues  of the turbulence energy e0 = eo(t) = e(t ,  0, 0) and the velocity defect 
UDo = UOo(t) = UD(t ,O,O) .  The  dashed (homogeneous fluid) and solid (stratified fluid) curves show the 
results of this work, points 1 and 2 refer to the experimental  da ta  of Lin and Pao, and points 3 and 4 to the 
results of the numerical experiments  performed by Hassid [4] (open points refer to a homogeneous fluid and 
filled points to a stratified fluid). 

In Fig. 3, the calculated values of the density-fluctuation dispersion Ee = r  1/4 are 
compared with the experimental  data  of Lin and Pao. Calculations were performed on a grid with number  of 
nodes 61 x 51 (grid No. 1). In the original plane (y, z), the nodes of the grid domain (yi,  z i )  were distributed 
as follows: 

yi = i h l y ,  i = 0 , . . . , 3 0 ;  yi = y i - l q l y ,  i = 3 1 , . . . , 6 0 ,  qly = 1.04; 

z i = j h z z ,  j = 0 , . . . , 2 0 ;  zj = z ) - z q l z ,  j = 2 1 , . . . , 5 0 ,  qzz = 1.047 

(h iy  = hlz  = 0.1). The value of Ax" varied from 0.01 to 0.5 according to the formula for the sum of the terms 
of a arithmetical progression with difference 0.01. 

To check the validity of the results given in Figs. i -3,  we also performed calculations on a finer grid 
with number of nodes 81 x 61 (grid No. 2): 

y i = i h 2 y ,  i = 0 , . . . , 4 0 ;  y i = y i _ l q 2 y ,  i = 4 1 , . . . , 8 0 ,  q2v= 1.041; 
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zj--~jh2z, j = 0 , . . . , 3 0 ;  z j = z j _ 1 q 2 = , j = 3 1 , . . . , 6 0 ,  q2==1.057 

(h2y = h1~/2 and h2z = h1~/2). The value of Ax" varied here from 0.0025 to 0.15 according to the formula 
for the terms of an arithmetical progression with difference 0.0025 (here and below, the nondimensionM grid 
parameters are given). Some data on comparison of the calculation results on grids No. 1 and 2 are presented 
in Table 1, where ~0 = t0(t) = ~(t,0,0), /p~ 2) = Ip'2(t,0,0)l, r = r = maxlr  yi, zj)[, Ly and Lz yi,zj 
are the characteristic vertical and horizontal sizes of the wake, respectively, which are determined from the 
relations e(t, Ly, 0) = 0.01e0(t) and e(t, 0, L=) = 0.01e0(t). Note also that the deviations of the data arrays 
of grid values of the functions r  UD, e, and ~ did not exceed, in uniform norm, the deviations of the values 
presented in Table 1. This shows the reliability of the proposed algorithm. The data in Figs. 1-3 demonstrate 
the rather high efficiency of the mathematical model of turbulent wakes. 

Let us analyze the role of the approximation of the boundary conditions on the axes of symmetry for 
Eq. (2.1). Table 2 lists the results of the numerical experiment performed on grid No. 1. The second and forth 
columns refer to the modified boundary conditions for Eq. (2.1), and columns 3 and 5 refer to the Neumann 
conditions for the longitudinal velocity-component defect. Approximation of the boundary conditions for (2.1) 
plays a very important part in UD0 variation. 

5. Basic C a l c u l a t i o n  Resu l t s .  The dynamics of a turbulent wake in a pycnocline is illustrated in Figs. 
4, 6, 8a, and 9-11. Calculations were performed for the distribution of the nondimensional unperturbed-fluid 
density 

p,n(z) = ps(z) = Po -/Ytanh(z//Y),  p0 = l laD, /3 = 0.1. 

The Froude number was assumed to equal 565, which corresponds to the conditions of one of the laboratory 
experiments of Lin and Pao [3] in a linearly stratified medium. The initial conditions were specified in 
accordance with the experimental data of [3, 4] in a homogeneous fluid. Calculations were performed on 
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TABLE 4 

Model 

Complete 
Simplified 

Complete 
Simplified 

Complete 
Simplified 

t 

1.12- 10 -3 
2.0 

1.II.  10 -3 

4.02.10 -4 
5.0 

3.97- 10 -4 

2.51 �9 10 -4 
2.48.10 -4 

~o ~/(p~) L~ L~ ,p,,~ Et 
1.02- 10 - 9  5.03. 10 -2 3.15. 10 ~ 1.37- 10 ~ 8.37- 10 - 4  1.96- 10 -6 

9.95.10 -1~ 4.97.10 -2 3.13- 10 ~ 1.34.10 ~ 8.24. 10 - 4  1 .88-  10 - 6  

4.71 �9 10 -11 3.03- 10 -2 6.35- 10 ~ 0.94- 10 ~ 7.92- 10 -4 7.57- 10 -7 
4.58- 10 T M  3.05- 10 -2 6.32- 10 ~ 0.92- 10 ~ 7.79- 10 -4 7.27.10 -7 

1.14.10 T M  

1.11.10 -11 
1.92.10 -2 
1.94.10 -2 

9.09.10 ~ 
9.05- I0 ~ 

0.97- i0 ~ 
0.96- 10 ~ 

6 . 2 4 . 1 0  - 4  

6.11 �9 10 - 4  

5.02. I0 -7 
4.80- 10 -7 

a grid with 71 x 36 nodes (grid No. 3). In the plane (y, z), the nodes of the grid domain were distributed as 
follows: 

y i=ih3u ,  i = 0 , . . . , 3 0 ;  yi=yi_ lq3y ,  i = 3 1 , . . . , 7 0 ,  q3u= 1.06; 

z i = j h 3 z ,  j = O , . . . , l O ;  z j = z j - l q 3 z ,  j = l l , . . . , 3 5 ,  q 3 z = l . l 1 3  

(h3~t = h3z = 0.075). The step Ax"  was varied from Az ~ = 0.055 to 3.6 by the formula A x  n+l = A z  n + 0.055, 
and was further assumed to be constant. 

Figures 4a-c show the curves of equal energy e/era(t) = const and era(t) = max e(t, yi, zj) for t = 1, 3. 
Yi,zj 

and 5, respectively; isolines 1-10 are presented by the levels 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9; 
the point r refers to the grid node in which a maximum of e(t, y, z) is reached. 

For comparison, Figs. 5a-c show the equal-energy curves for the linear density distribution of an 
unperturbed fluid (Fr = 565, the designations are the same as in Fig. 4). 

Convective flow is illustrated in Figs. 6a--c and 7a-c where the streamlines with r = const are plotted 
for t = 1, 3, and 5, respectively; isolines 1-9 correspond to t he  levels - 2 -  10 -4,  - 1 0  -4,  - 2 . 5 -  10 -5 ,  0, 5 .10 -5 , 
10 -4, 2- 10 -4, 3 .10  -4, and 4- 10 -4. Clearly, there is a great difference in the dynamics of convective vortices 
for a pycnocline (Fig. 6) and for linear stratification (Fig. 7). Linear stratification is characterized by vortex 
subdivision and by the process of formation of opposite-direction vortices [23]. In the pycnocline considered, a 
single vortex which becomes practically a steady one for t /> 5 is formed in each quadrant of the plane (y, z). 

The decay of the turbulent  wake is accompanied by generation of internal waves. Internal waves which 
are induced by the turbulent wake in the pycnocline are shown in Fig. 8a in which the dynamics of the curve 
P0 - (P) = P0 - psn(0, 07) is given for the moments of t ime t = 1, 2, 3, 4, 5, 6, 7, and 8 (curves 1-8). Evidently, 
for t /> 5, the perturbation varies slightly, shifting virtually with constant velocity along the y axis. 

The pattern of internal waves generated by the turbulent wake in a linearly stratified medium is 
illustrated in Fig. 8b where we show the dynamics of the curve p0 - (p) = p0 - pst(0, 07) for t = 1, 2, 3, 4, 
and 5 [(curves 1-5), pst(z) = p0 - z]. Unlike the pycnocline, the wave process is followed by the appearance 
of new crests and valleys with time. As a result, the flow in a linearly stratified medium is characterized by a 
considerably smaller amplitude of internal waves, this amplitude decreasing with time. The internal waves in 
Fig. 8 are in full agreement with the results of Figs. 6 and 7. 

The decay of the turbulent wake is also shown in Figs. 9 and 10. Figure 9 shows the variation of the 
characteristic horizontal Ly (curves 1 and 3) and vertical Lz (curves 2 and 4) sizes of the turbulent wake. 
Curves 1 and 2 refer to the pycnocline, and curves 3 and 4 refer to the linearly stratified fluid. It is seen that 
the turbulent wake in the pycnocline spreads more intensely. At the same time, the variation in the turbulence 
energy on the axis of the wake eo(t) (see Fig. 10, where 1 is the pycnocline and 2 is the linear stratification) 
depends weakly on the type of stratification, although there are appreciable differences in the distributions 
of the e = const curves (see Figs. 4 and 5). In the pycnocline, the maximum value of the turbulence energy 
for t > 1.5 is reached not on the wake axis, which is explained by the specific features of the dynamics of the 
averaged convective motion caused by the wake collapse (see Figs. 6-8). 

We shall dwell on the estimates of the calculational accuracy. The basic calculations were carried out 
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TABLE 5 

@ 

0.184 0.095 

0.196 0.162 

0.194 0.168 

0.254 0.205 

0.090 0.031 

0.140 0.085 

0.178 0.134 

0.208 0.168 

101 

10-z 10 -1 10 ~ t* 

Fig. 9 

on grid No. 3. We also made calculations on a finer grid (grid No. 4) which was arranged similarly to grid 
No. 3 in the horizontal direction, and the nodes in the vertical direction were distributed in the following 
manner: 

z j=jh4, ,  j = 0 , . . . , 20 ;  zj=zj-lq4z, j=21 , . . . ,55 ,  q4z = 1.082 

(h4z = 0.035). The step Az"  (similarly to grid No. 3) was varied from 0.015 to 0.9. 
Some data obtained by comparing the pycnocline calculations on grids Nos. 3 and 4 are given in Table 3. 

Clearly, the calculation results are sufficiently close. The deviations of the data arrays of the desired functions 
in a norm that is a grid analog of the space norm of continuous functions did not exceed the deviations of the 
characteristic wake parameters given in Table 3. 

6. S impl i f i ed  Mode l s .  The fact that  the defect of the longitudinal velocity component UO degenerates 
much more rapidly than v ~  is the known result of calculational-theoretical and experimental studies [36, 37] of 
the dynamics of momentumless turbulent wakes in a homogeneous fluid. In this connection, the mathematical 
model of the momentumless turbulent wake in a pycnocline in which Up -- 0 is of interest. 

Some calculation results with application of the complete (Up ~ 0) and simplified (Up -- 0) models 
axe presented in Table 4. Numerical experiments were performed using grid No. 3. The calculation results can 
be considered rather close. 

Further simplification of the mathematical flow model is connected with analysis of the behavior of 
the total turbulence Et(t) and internal-wave Pt(t) energies: 

OO OO 0O 

+W'2 , + J d,. 
0 0 0 

Variation of these quantities as a function of time is shown in Fig. 11 where curves 1 and 2 corresponds to 
Et(t) and Pt(t) in the pycnocline, and curves 3 and 4 correspond to Et(t) and Pt(t) in a linearly stratified 
fluid. Evidently, the Et(t) value decreases monotonically with time (curves 1 and 3) owing to dissipation of 
the turbulent energy into heat under the action of molecular viscosity. At the same time, owing to diffusion 
of the turbulent mass and the work of buoyancy forces, a portion of the turbulence energy becomes potential. 
generation of internal wave begins, and Pt(t) increases up to t ~ 3 (curves 2 and 4). For large values of time, 
Pt(t), however, remains practically constant. Just as in the case of a model problem on the dynamics of the 
localized zone of turbulent mixing [26, 29], such a behavior of Pt(t) and Et(t) shows flow splitting into the 
wave and diffusion processes. 

The latter allows one to propose simplified mathematical models for calculation of the dynamics 
of the far turbulent wake: the Euler equations in the Boussinesq approach for numerical modeling of the 
characteristics of internal waves, and the diffusion model for numerical analysis of the characteristics of the 
turbulent wake proper. Some calculation results which demonstrate the possibility of applying a simplified 
model (Euler equations in the Boussinesq approximation) to computation of internal waves generated by the 
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far turbulent wake are listed in Table 5, where 

~p maxl<p,)~ ^ - o  -o ^ - o  ,-o ^-o -o - -  - = �9 . <p,),,/I/max{l<p, >,,j I, max IWi,j - r I/ma.x{ Ir I, 
t , j  ' t , j  t , j  

Here the hat symbol denotes quantities obtained using the simplified model; the time-layer number no is 
chosen such that the time values correspond to those given in Table 5. The second and fourth columns show 
the results of comparison of the computational data obtained by the complete and simplified models when 
the initial conditions for the latter model were set based on the solution of the complete problem for t = 3. 
For comparison, the third and fifth columns show the data of computations in which the simplified model 
was employed for t t> 4. Application of the diffusion model for t />  3 gives rise, in particular, to deviations 
(compared with the complete model) which differ by not greater than 20% from the axial values of the 
turbulence energy. 

The deviations in Table 5 substantially exceed those which correspond to the case of a linear 
stratification [20, 21]. This is caused by the presence, in pycnocline, of a weak interaction of the turbulence in 
the wake and the wake-induced wave motions. This interaction is nevertheless not intense, and it is expedient 
to use the simplified models for numerical flow analysis. 

Let us go over again to the results in Fig. 8a. Since the problem on the dynamics of internal waves 
generated by the collapse of the turbulent wake in the pycnocline can be regarded as the Cauchy problem for 
the Euler equations in the Boussinesq approximation, it is natural to attempt to estimate the parameters of 
these waves with the use of the asymptotic relation in [38] which relates the maximum amplitude fi, to the 
wave velocity ~: 

= Y 1 + g . (6 .1 )  

As follows from the computations, ~ = cT./D = 0.15, T. = 1/,r  and A = A/D = 0.39. For ft, = 0.39, 
relation (6.1) yields ~a = 0.13 which points to, precisely as in [5], the possibility of applying relation (6.1) to 
approximate estimates. 

Thus, we have constructed a numerical model of the dynamics of a momentumless turbulent wake in 
a pycnocline. We have also considered a simple modified e-r model of turbulence and the equally simple (but 
reliable enough) finite-difference algorithm of solution. Improving the mathematical model and its discrete 
analog is the subject of further studies. 

This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 93-01- 
17925 and 95-01-00910). 
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